热力学与微分形式

1 minute read

Published:

本文从热力学的最基本的能量守恒的微分方程出发,通过外微分运算推导得到 Maxwell 关系式,偏导数关系和能态方程.

Maxwell 关系式

热力学的基本方程为:

\[T\mathrm{d}S=\mathrm{d}U+p\mathrm{d}V\]

移项,有:

\[\mathrm{d}U=T\mathrm{d}S-p\mathrm{d}V\]

上述是一个 \(1\)-形式方程. 若我们选取 \(\left\{ S,V\right\}\) 为坐标系,\(\left\{ \mathrm{d}S,\mathrm{d}V\right\}\) 为对偶基底,则 \(U=U\left(S,V\right),p=p\left(S,V\right)\).

因此我们可以对上式进行外微分运算:

\[\begin{aligned} \mathrm{d}^{2}U & =\left[\left(\frac{\partial T}{\partial S}\right)_{V}\mathrm{d}S+\left(\frac{\partial T}{\partial V}\right)_{S}\mathrm{d}V\right]\wedge\mathrm{d}S-\left[\left(\frac{\partial p}{\partial S}\right)_{V}\mathrm{d}S+\left(\frac{\partial p}{\partial V}\right)_{S}\mathrm{d}V\right]\wedge\mathrm{d}V\\ & =\left[\left(\frac{\partial T}{\partial V}\right)_{S}+\left(\frac{\partial p}{\partial S}\right)_{V}\right]\mathrm{d}V\wedge\mathrm{d}S \end{aligned}\]

由 Poincare 引理:\(\mathrm{d}^{2}U=0\),因此:

\[\mathrm{\left(\frac{\partial T}{\partial V}\right)_{S}=-\left(\frac{\partial p}{\partial S}\right)_{V}}\]

若以 \(\left\{ T,V\right\}\) 为坐标系,则:

\[\begin{aligned} \mathrm{d}^{2}U & =\mathrm{d}T\wedge\left[\left(\frac{\partial S}{\partial T}\right)_{V}\mathrm{d}T+\left(\frac{\partial S}{\partial V}\right)_{T}\mathrm{d}V\right]-\left[\left(\frac{\partial p}{\partial T}\right)_{V}\mathrm{d}T+\left(\frac{\partial p}{\partial V}\right)_{T}\mathrm{d}V\right]\wedge\mathrm{d}V\\ & =\left[\left(\frac{\partial S}{\partial V}\right)_{T}-\left(\frac{\partial p}{\partial T}\right)_{V}\right]\mathrm{d}T\wedge\mathrm{d}V \end{aligned}\]

由 Poincare 引理:\(\mathrm{d}^{2}U=0\),因此:

\[\left(\frac{\partial p}{\partial T}\right)_{V}=\left(\frac{\partial S}{\partial V}\right)_{T}\]

同时,我们也可以做如下处理:

\[\begin{aligned} \mathrm{d}^{2}U & =\mathrm{d}T\wedge\mathrm{d}S-\mathrm{d}p\wedge\mathrm{d}V\\ & =-\mathrm{d}\left(S\mathrm{d}T\right)-\mathrm{d}\left(p\mathrm{d}V\right)\\ & =\mathrm{d}\left(-S\mathrm{d}T-p\mathrm{d}V\right) \end{aligned}\]

由于 \(\mathrm{d}^{2}U=0\),因此由 Poincare 引理的逆定理,可以定义:

\[\mathrm{d}F=-S\mathrm{d}T-p\mathrm{d}V\]

\(F\) 即 Helmholz 自由能.

若以 \(\left\{ S,p\right\}\) 为坐标系,则:

\[\begin{aligned} \mathrm{d}^{2}U & =\left[\left(\frac{\partial T}{\partial S}\right)_{p}\mathrm{d}S+\left(\frac{\partial T}{\partial p}\right)_{S}\mathrm{d}p\right]\wedge\mathrm{d}S-\mathrm{d}p\wedge\left[\left(\frac{\partial V}{\partial S}\right)_{p}\mathrm{d}S+\left(\frac{\partial V}{\partial p}\right)_{S}\mathrm{d}p\right]\\ & =\left[\left(\frac{\partial T}{\partial p}\right)_{S}-\left(\frac{\partial V}{\partial S}\right)_{p}\right]\mathrm{d}p\wedge\mathrm{d}S \end{aligned}\]

由 Poincare 引理:\(\mathrm{d}^{2}U=0\),因此:

\[\left(\frac{\partial T}{\partial p}\right)_{S}=\left(\frac{\partial V}{\partial S}\right)_{p}\]

同时,我们也可以做如下处理:

\[\begin{aligned} \mathrm{d}^{2}U & =\mathrm{d}T\wedge\mathrm{d}S-\mathrm{d}p\wedge\mathrm{d}V\\ & =\mathrm{d}\left(T\mathrm{d}S+V\mathrm{d}p\right) \end{aligned}\]

由于 \(\mathrm{d}^{2}U=0\),因此由 Poincare 引理的逆定理,可以定义:

\[\mathrm{d}H=T\mathrm{d}S+p\mathrm{d}V\]

\(H\) 即焓.

若以 \(\left\{ T,p\right\}\) 为坐标系,则:

\[\begin{aligned} \mathrm{d}^{2}U & =\mathrm{d}T\wedge\left[\left(\frac{\partial S}{\partial T}\right)_{p}\mathrm{d}T+\left(\frac{\partial S}{\partial p}\right)_{T}\mathrm{d}p\right]-\mathrm{d}p\wedge\left[\left(\frac{\partial V}{\partial T}\right)_{p}\mathrm{d}T+\left(\frac{\partial V}{\partial p}\right)_{T}\mathrm{d}p\right]\\ & =\left[\left(\frac{\partial S}{\partial p}\right)_{T}+\left(\frac{\partial V}{\partial T}\right)_{p}\right]\mathrm{d}T\wedge\mathrm{d}p \end{aligned}\]

由 Poincare 引理:\(\mathrm{d}^{2}U=0\),因此:

\[\left(\frac{\partial S}{\partial p}\right)_{T}=-\left(\frac{\partial V}{\partial T}\right)_{p}\]

同时,我们也可以做如下处理:

\[\begin{aligned} \mathrm{d}^{2}U & =\mathrm{d}T\wedge\mathrm{d}S-\mathrm{d}p\wedge\mathrm{d}V\\ & =\mathrm{d}\left(-S\mathrm{d}T+V\mathrm{d}p\right) \end{aligned}\]

由于 \(\mathrm{d}^{2}U=0\),因此由 Poincare 引理的逆定理,可以定义:

\[\mathrm{d}G=-S\mathrm{d}T+V\mathrm{d}p\]

\(G\) 即 Gibbs 自由能.

综上,我们有:

\[\begin{aligned} \mathrm{\left(\frac{\partial T}{\partial V}\right)_{S}} & =-\left(\frac{\partial p}{\partial S}\right)_{V}\\ \left(\frac{\partial p}{\partial T}\right)_{V} & =\left(\frac{\partial S}{\partial V}\right)_{T}\\ \left(\frac{\partial T}{\partial p}\right)_{S} & =\left(\frac{\partial V}{\partial S}\right)_{p}\\ \left(\frac{\partial S}{\partial p}\right)_{T} & =-\left(\frac{\partial V}{\partial T}\right)_{p} \end{aligned}\]

上面四式即热力学中的 Maxwell 关系式.其实际上都是从最基本的关系式:

\[\mathrm{d}U=T\mathrm{d}S-p\mathrm{d}V\]

中得来,通过选取不同的坐标做外微分而得到. 同时,通过 Poincare 引理及其逆定理,我们还可以在不涉及任何物理,仅从纯粹的代数的角度得到几个热力学态函数:

  • Helmholz 自由能:\(\mathrm{d}F=-S\mathrm{d}T-V\mathcal{\mathrm{d}}p\).

  • 焓:\(\mathrm{d}H=T\mathrm{d}S+p\mathrm{d}V\).

  • Gibbus 自由能:\(\mathrm{d}G=-S\mathrm{d}T+V\mathrm{d}p\).

偏导数关系

这里,我们设 \(T=T\left(p,S\right),S=S\left(p,T\right),p=p\left(S,T\right)\),因此,我们有:

\[\begin{aligned} \mathrm{d}T\wedge\mathrm{d}S & =\left(\frac{\partial T}{\partial p}\right)_{S}\mathrm{d}p\wedge\mathrm{d}S\\ & =\left(\frac{\partial T}{\partial p}\right)_{S}\mathrm{d}p\wedge\left(\frac{\partial S}{\partial T}\right)_{p}\mathrm{d}T\\ & =\left(\frac{\partial T}{\partial p}\right)_{S}\left(\frac{\partial p}{\partial S}\right)_{T}\mathrm{d}S\wedge\left(\frac{\partial S}{\partial T}\right)_{p}\mathrm{d}T\\ & =-\left(\frac{\partial T}{\partial p}\right)_{S}\left(\frac{\partial p}{\partial S}\right)_{T}\left(\frac{\partial S}{\partial T}\right)_{p}\mathrm{d}T\wedge\mathrm{d}S \end{aligned}\]

因此,有:

\[\left(\frac{\partial T}{\partial p}\right)_{S}\left(\frac{\partial p}{\partial S}\right)_{T}\left(\frac{\partial S}{\partial T}\right)_{p}=-1\]

上即偏导数关系(互反定理).

能态方程

还是由热力学的基本方程:

\[T\mathrm{d}S=\mathrm{d}U+p\mathrm{d}V\]

上式可以改写成:

\[\mathrm{d}S=\frac{\mathrm{d}U+p\mathrm{d}V}{T}\]

选取 \(\left\{ T,V\right\}\) 为坐标系,有:

\[\begin{aligned} \mathrm{d}^{2}S & =\mathrm{d}\left(\frac{1}{T}\right)\wedge\mathrm{d}U+\mathrm{d}\left(\frac{p}{T}\right)\wedge\mathrm{d}V\\ & =-\frac{1}{T^{2}}\mathrm{d}T\wedge\mathrm{d}U+\frac{1}{T}\mathrm{d}p\wedge\mathrm{d}V-\frac{p}{T^{2}}\mathrm{d}T\wedge\mathrm{d}V\\ & =-\frac{1}{T^{2}}\mathrm{d}T\wedge\left[\left(\frac{\partial U}{\partial T}\right)_{V}\mathrm{d}T+\left(\frac{\partial U}{\partial V}\right)_{T}\mathrm{d}V\right]\\ & \quad+\frac{1}{T}\left[\left(\frac{\partial p}{\partial T}\right)_{V}\mathrm{d}T+\left(\frac{\partial p}{\partial V}\right)_{T}\mathrm{d}V\right]\wedge\mathrm{d}V\\ & \quad-\frac{p}{T^{2}}\mathrm{d}T\wedge\mathrm{d}V\\ & =\frac{1}{T^{2}}\left[-\left(\frac{\partial U}{\partial V}\right)_{T}+T\left(\frac{\partial p}{\partial T}\right)_{V}-p\right]\mathrm{d}T\wedge\mathrm{d}V \end{aligned}\]

由 Poincare 引理:\(\mathrm{d}^{2}S=0\),因此,有:

\[\left(\frac{\partial U}{\partial V}\right)_{T}=T\left(\frac{\partial p}{\partial T}\right)_{V}-p\]

上式即热力学能态方程.