矢量分析指标法

5 minute read

Published:

指标法的简要介绍以及其在矢量分析中的运用。

在矢量分析中,一种很方便的方法是指标法. 指标法通过爱因斯坦求和约定来缩略求和从而表示各个分量之间的关系,其形式较为简单,不易出错,且易于推广到高阶张量.

在本文中,我们所讨论的均在笛卡尔坐标系中,不考虑指标的协变与逆变.

爱因斯坦求和约定

定义

  1. 当式子中一个指标出现了两次,那么对这个指标求和,这种指标称为哑指标.

  2. 在一个式子中,指标最多不超过两次出现.

  3. 一般拉丁字母(\(i,j,k\)等)认为可取\(1,2,3\),而希腊字母(\(\mu,\nu,\rho\)等)认为可取\(0,1,2,3\)或者\(1,2,3,4\).

向量的指标表示

向量\(\boldsymbol{a}=a_1 e^1 + a_2 e^2 + a_3 e^3\)可表示为

\[\boldsymbol{a} = a_i e^i\]

这代表了

\[\boldsymbol{a} = \sum^3_{i=1} a_i e^i\]

其中\(e^1,e^2,e^3\)表示三维空间的三个(basis),它们是线性无关的. 这与前面的\(a_i\)不同,其不再是实数,故将其指标放在右上角凸显其不同.

矩阵的表示

对于一个矩阵

\[A = \begin{pmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{pmatrix}\]

可用求和约定简记为\(A_{ij}\)

方程的表示

对于一个三元一次线性方程组

\[\begin{cases} A_{11} x_1 + A_{12} x_2 + A_{13} x_3 = b_1 \\ A_{21} x_1 + A_{22} x_2 + A_{23} x_3 = b_2 \\ A_{31} x_1 + A_{32} x_2 + A_{33} x_3 = b_3 \end{cases}\]

可以用求和约定简记为

\[A_{ij} x_i = b_j\]

其中\(j\)是哑指标,\(i\)是自由指标.

Kronecker Symbol

定义

Kronecker Symbol 在线性代数中常被用于表现正交性,其定义为

\[\delta_{ij} = \begin{cases} 1, &\text{ if } i = j \\ 0, &\text{ if } i \neq j \end{cases}\]

性质

  1. \[\delta_{im} \delta_{mj} = \delta_{ij}\]
  2. \[\epsilon_{ijk} \delta_{km} = \epsilon_{ijm}\]

Levi-Civita Symbol

定义

定义符号\(\epsilon_{ijk}\)为

\[\epsilon_{ijk} = \begin{cases} 1, &\text{ (1,2,3)轮换 } \\ -1, &\text{ (3,2,1)轮换 }\\ 0, &\text{其他} \end{cases}\]

性质

性质一

  1. 下标轮换不变:\(\epsilon_{ijk} = \epsilon_{jki} = \epsilon_{kij}\)

  2. 任意两个下标交换取相反数:\(\epsilon_{ijk} = - \epsilon_{ikj} = - \epsilon_{kji} = - \epsilon_{jik}\)

性质二

\[\epsilon_{ijk} \epsilon_{lmn} = \begin{vmatrix} \delta_{il} & \delta_{im} & \delta_{in} \\ \delta_{jl} & \delta_{jm} & \delta_{jn} \\ \delta_{kl} & \delta_{km} & \delta_{kn} \end{vmatrix}\] \[\epsilon_{ijk} \epsilon_{imn} = \begin{vmatrix} \delta_{jm} & \delta_{jn} \\ \delta_{km} & \delta_{kn} \end{vmatrix} = \delta_{jm} \delta_{kn} - \delta_{km} \delta_{kn}\]

矢量运算

点乘

对于两个基之间的点乘,有

\[e^i \cdot e^j = \delta_{ij}\]

对于矢量\(\boldsymbol{a} = a_i e^i\)和矢量\(\boldsymbol{b} = b_j e^j\),其点乘为

\[\boldsymbol{a} \cdot \boldsymbol{b} = a_i e^i \cdot b_j e^j = a_i b_j (e^i \cdot e^j) = a_i b_i\]

叉乘

对于两个基之间的叉乘,有

\[e^i \times e^j = \epsilon_{ijk} e^k\]

对于矢量\(\boldsymbol{a} = a_i e^i\)和矢量\(\boldsymbol{b} = b_j e^j\),其叉乘为

\[\boldsymbol{a} \times \boldsymbol{b} = a_i e^i \times b_j e^j = a_i b_j (e^i \times e^j) = \epsilon_{ijk} a_i b_j e^k\]

三重积

矢量\(\boldsymbol{a},\boldsymbol{b},\boldsymbol{c}\)三重积为

\[\begin{aligned} \boldsymbol{a} \cdot (\boldsymbol{b} \times \boldsymbol{c}) &= a_i e^i \cdot (\epsilon_{jkl} b_j c_k e^l)\\ &= \epsilon_{jkl} a_i b_j c_k (e^i \cdot e^l)\\ &= \epsilon_{ijk} a_i b_j c_k \end{aligned}\]

三重叉积

矢量\(\boldsymbol{a},\boldsymbol{b},\boldsymbol{c}\)三重叉积为

\[\begin{aligned} \boldsymbol{a} \times (\boldsymbol{b} \times \boldsymbol{c}) &= a_i e^i \times (b_j c_k \epsilon_{jkl} e^l) \\ &= \epsilon_{jkl} a_i b_j c_k (e^i \times e^l) \\ &= \epsilon_{ilm} \epsilon_{jkl} a_i b_j c_k e^m \\ &=-(\epsilon_{lim} \epsilon_{ljk}) a_i b_j c_k e^m \\ &=-(\delta_{ij} \delta_{mk} - \delta_{ik} \delta_{mj}) a_i b_j c_k e^m \end{aligned}\]

其中

\[-\delta_{ij} \delta_{mk} a_i b_j c_k e^m = - a_i b_i c_k e^k = - (\boldsymbol{a} \cdot \boldsymbol{b}) \boldsymbol{c}\] \[\delta_{ik} \delta_{mj} a_i b_j c_k e^m = a_i c_i b_j e^j = (\boldsymbol{a} \cdot \boldsymbol{c}) \boldsymbol{b}\]

综上

\[\boldsymbol{a} \times (\boldsymbol{b} \times \boldsymbol{c}) = (\boldsymbol{a} \cdot \boldsymbol{c}) \boldsymbol{b} - (\boldsymbol{a} \cdot \boldsymbol{b}) \boldsymbol{c}\]

哈密顿算子

哈密顿算子

\[\nabla = \boldsymbol{i} \frac{\partial}{\partial x} + \boldsymbol{j} \frac{\partial}{\partial y} + \boldsymbol{k} \frac{\partial}{\partial z} = e^i \partial_i\]

莱布尼茨律

对于微分算子\(\partial_i\),有

\[\partial_i (A_j B_k) = A_j \partial_i B_k + B_k \partial_i A_j\]

梯度

\[\nabla \phi = e^i \partial_i \phi\]

散度

\[\nabla \cdot \boldsymbol{A} = \partial_i A_i\]

散度

\[\nabla \times \boldsymbol{A} = \epsilon_{ijk} \partial_i A_j e^k\]

场论公式推导

注意:在进行场论公式推导时,\(\epsilon_{ijk}, \delta_{ij},e^i\)可任意调换位置移动,但\(\partial_i\)不可以,否则会改变作用对象.

\(\nabla (a b)\):

\[\nabla (ab) = e^i \partial_i (ab) = a (e^i \partial_i b) + b (e^i \partial_i a) = a \nabla b + b \nabla a\]

\(\nabla \cdot (a \boldsymbol{B})\):

\[\begin{aligned} \nabla \cdot (a \boldsymbol{B}) &= \partial_i [a \boldsymbol{B}]_i \\ &= \partial_i (a B_i) \\ &= a \partial_i B_i + B_i \partial_i a \\ &= a \nabla \cdot \boldsymbol{B} + \boldsymbol{B} \cdot \nabla a \end{aligned}\]

\(\nabla \times (a \boldsymbol{B})\):

\[\begin{aligned} \nabla \times (a \boldsymbol{B}) &= \epsilon_{ijk} \partial_i [a \boldsymbol{B}]_j e^k \\ &= \epsilon_{ijk} \partial_i (a B_j) e^k \\ &= \epsilon_{ijk} a \partial_i B_j e^k + \epsilon_{ijk} B_j \partial_i a e^k \\ &= a \nabla \times \boldsymbol{B} + (\nabla a) \times \boldsymbol{B} \end{aligned}\]

\(\nabla \cdot (\boldsymbol{A} \times \boldsymbol{B})\):

\[\begin{aligned} \nabla \cdot (\boldsymbol{A} \times \boldsymbol{B}) &= \nabla \cdot (\epsilon_{ijk} A_i B_j e^k) \\ &= \partial_k \epsilon_{ijk} (A_i B_j) \\ &= \epsilon_{ijk} (A_i \partial_k B_j + B_j \partial_k A_i) \\ &= - A_i \epsilon_{kji} \partial_k B_j + B_j \epsilon_{kij} \partial_{k} A_i \\ &= \boldsymbol{B} \cdot (\nabla \times \boldsymbol{A}) - \boldsymbol{A} \cdot (\nabla \times \boldsymbol{B}) \end{aligned}\]

\(\nabla \times (\boldsymbol{A} \times \boldsymbol{B})\):

\[\begin{aligned} \nabla \times (\boldsymbol{A} \times \boldsymbol{B}) &= e^i \partial_i \times (a_j b_k \epsilon_{jkl} e^l) \\ &= \partial_i \epsilon_{ilm} \epsilon_{jkl} a_j b_k e^m \\ &= (\delta_{mj} \delta_{ik} - \delta_{mk} \delta_{ij}) \partial_i (a_j b_k) e^m \\ &= (\delta_{mj} \delta_{ik} - \delta_{mk} \delta_{ij})(a_j \partial_i b_k + b_k \partial_i a_j) \end{aligned}\]

上面可分成四部分:

Part1:

\[\delta_{mj} \delta_{ik} a_j \partial_i b_k e^m = a_i e^i \partial_j b_j = \boldsymbol{A}(\nabla \cdot \boldsymbol{B})\]

Part2:

\[- \delta_{mk} \delta_{ij} a_j \partial_i b_k e^m = - (a_i \partial_i) b_j e^j = - (\boldsymbol{A} \cdot \nabla) \boldsymbol{B}\]

Part3:

\[\delta_{mj} \delta_{ik} b_k \partial_i a_j e^m = (b_k \partial_k) a_i e^i = (\boldsymbol{B} \cdot \nabla) \boldsymbol{A}\]

Part4:

\[- \delta_{mk} \delta_{ij} b_k \partial_i a_j e^m = - b_k e^k \partial_i a_i = - \boldsymbol{B}(\nabla \cdot \boldsymbol{A})\]

综上

\[\nabla \times (\boldsymbol{A} \times \boldsymbol{B}) = \boldsymbol{A}(\nabla \cdot \boldsymbol{B}) - (\boldsymbol{A} \cdot \nabla) \boldsymbol{B} + (\boldsymbol{B} \cdot \nabla) \boldsymbol{A} - \boldsymbol{B}(\nabla \cdot \boldsymbol{A})\]